ONNX Runtime C++端侧模型部署YOLOv5

加载准备 初始化ONNXRuntime环境 Ort::Env env(ORT_LOGGING_LEVEL_WARNING, \"YOLOv5Inference\"); Ort::Env 是 ONNX Runtime C++ API 中用于初始化运行环境的类,有多个重载的构造函数,下面是一个构造函数原型及参数作用如下。 Ort::Env( OrtLoggingLevel logging_level, c

ONNX Runtime Python端侧模型部署YOLOv5

ONNX Runtime介绍 ONNX Runtime不依赖于Pytorch、tensorflow等机器学习训练模型框架。他提供了一种简单的方法,可以在CPU、GPU、NPU上运行模型。通常ONNX Runtime用于端侧设备模型的运行推理。要使用ONNX Runtime运行模型,一般的步骤如下: 用你最喜欢的框架(如pytorch、tensorflow、paddle等)训练一个模型。 将模型转换

llama.cpp部署大模型

安装llama.cpp 从GitHub上下载官方的源码。 git clone https://github.com/ggml-org/llama.cpp.git cd llama.cpp 使用camke进行编译,先创建build环境 cmake -B build 发现有报错curl没有安装。 -- The C compiler identification is GNU 11.3.0 -- The

端侧部署YOLOv5模型

导出 ONNX模型 python export.py --weights runs/train/exp2/weights/ NPU不支持动态输入,使用onnxim工具进行转换为固定输入,先安装onnxsim工具。 pip install onnxsim -i https://pypi.doubanio.com/simple/ 接着进行转换 python -m onnxsim runs/train/

云服务器搭建YOLOv5训练环境

介绍 本文使用AutoDL云服务搭建YOLOv5的运行环境。 获取云服务器 在这个链接上https://www.autodl.com/home订阅服务,这里选择的是按量计费。 镜像选择基础镜像Mniconda最新ubuntu环境。 交钱订阅完成后就可以获取到登录的信息了。 这里使用的是ssh工具根据获取到的登录名和密码进行登录,需要注意的是端口可能不是默认的22,按照实际的端口进行。 配置cond

小智Ai语音交互简要分析

app start 主要是初始化板级、显示、WiFi连接、音频codec、编解码、协议、音效、唤醒几个环节。 auto& board = Board::GetInstance(); //获取板级实例 SetDeviceState(kDeviceStateStarting);//设置出事状态为kDeviceStateStarting /* Setup the display */ auto

2条命令本地部署deepseek

环境是centos,下面是部署步骤。 命令1: 安装ollama 安装命令:curl -fsSL https://ollama.com/install.sh | sh 安装日志: >>> Cleaning up old version at /usr/local/lib/ollama >>> Installing ollama to /usr/local >

豆包大模型接入体验

前置条件 需要先创建获得API key和创建推理接入点。 API key获取 https://www.volcengine.com/docs/82379/1361424#f79da451 创建推理接入点 https://www.volcengine.com/docs/82379/1099522 安装python环境 python版本需要安装到Python 2.7或以上版本。执行python --v