前向传播、反向传播和计算图 前向传播(Forward Propagation) 前向传播是神经网络中从输入数据到输出预测值的计算过程。它通过逐层应用权重(W)和偏置(b),最终生成预测值 y\',并计算损失函数L。 模型定义 y\' = W \\cdot x + b 损失函数(均方误差) L = \\frac{1}{n} \\sum_{i=1}^{n} (y\'(i) - y_{\\text{true}}(i))^2 示例 输入数据:x 深度学习 laumy 21小时前 22 热度 0评论
梯度计算 什么是梯度 梯度(Gradient)是用于描述多元函数在某一点的变化率最大的方向及其大小。在深度学习中,梯度被广泛用于优化模型参数(如神经网络的权重和偏置),通过梯度下降等算法最小化损失函数。 对于多元函数 f(x_1, x_2, \\dots, x_n),其梯度是一个向量,由函数对每个变量的偏导数组成,记作: \\nabla f = \\left( \\frac{\\partial f}{\\partial 深度学习 laumy 21小时前 9 热度 0评论
激活函数 概念 前面我们主要使用的是线性模型,但是线性模型有很多局限性,因为我们要建模的问题并不能单纯使用线性模型就能够拟合的,如下示例。 我们要拟合红色部分的函数,使用线性模型即使在怎么调整W和b都没法进行拟合出来,要拟合这样的函数,我们需要非线性的函数。 如上图,要拟合这样的模型,我们可以使用①②③函数相加再加上一个b偏置。那这里的①②③函数怎么来了,可以看出是wx+b再经过一个sigmoid转换得来, Ai laumy 1天前 12 热度 0评论
sotfmax回归实现 什么是sotfmax回归 Softmax回归(Softmax Regression),也叫多项逻辑回归,是一种用于多分类问题的分类算法。它是对逻辑回归(Logistic Regression)的一种扩展,适用于处理输出类别数大于2的情况。Softmax回归通过使用Softmax函数来将每个类别的输出转化为一个概率分布,使得输出值能够表示每个类别的概率,并且所有类别的概率之和为1。 举个例子:假设有 Ai laumy 4天前 30 热度 0评论
线性回归实现 线性回归 线性回归模型根据给定的数据集和对应的标签,通过一个函数模型来拟合数据集以及对应标签的映射关系。而这个模型可以设置为y=wx+b的一个函数,其中x和w是一个向量。目标就是找出权重w和偏执b的值,使得模型更逼近数据集合的规律,也就是能够预测的更准确。 线性回归示例实现 pytorch本身有线性回归的函数,只是这里通过实现pytoch来加深理解 读取数据集 def data_iter(batc Ai laumy 7天前 97 热度 0评论
小智Ai语音交互简要分析 app start 主要是初始化板级、显示、WiFi连接、音频codec、编解码、协议、音效、唤醒几个环节。 auto& board = Board::GetInstance(); //获取板级实例 SetDeviceState(kDeviceStateStarting);//设置出事状态为kDeviceStateStarting /* Setup the display */ auto Ai laumy 28天前 106 热度 0评论
2条命令本地部署deepseek 环境是centos,下面是部署步骤。 命令1: 安装ollama 安装命令:curl -fsSL https://ollama.com/install.sh | sh 安装日志: >>> Cleaning up old version at /usr/local/lib/ollama >>> Installing ollama to /usr/local > Ai laumy 2025-02-10 147 热度 2评论
豆包大模型接入体验 前置条件 需要先创建获得API key和创建推理接入点。 API key获取 https://www.volcengine.com/docs/82379/1361424#f79da451 创建推理接入点 https://www.volcengine.com/docs/82379/1099522 安装python环境 python版本需要安装到Python 2.7或以上版本。执行python --v Ai laumy 2025-01-01 290 热度 0评论